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CHAPTER 1 

 

General Introduction 

 

1.1. Introduction 

  

 The cleanup of wastewater and air pollution has become increasingly important in 

the past decades, and burgeoning populations require more and more energy and 

resources to sustain a comfortable standard of living. Two major types of pollution can be 

identified that encompass all others: technological and agricultural. Technological 

pollution is that produced from human sources: industrial, military, etc. Compounds with 

low solubility in water characterize this type of pollution. A separate layer forms on the 

surface that negatively affects the physical properties of the water (oxygen uptake, 

surface tension), and also hampers any living thing that comes in contact with the surface. 

The second major type of pollution is that of high concentrations of nutrients that leach 

into the soil and drain into water sources mainly from agriculture.  The most notable 

effect of this form of pollution is the overgrowth of algae and other plants in the water 

source that cannot be removed by natural means, which build up in and prematurely age a 

water source.1 With these issues in mind, freshwater sources are of particular concern as 

they are the major source of drinking water for the world’s population. Runoff from 

pollution sources enters bodies of water not naturally able to contain and remediate 

them.2 Although the prevention of pollution is critical to cleanup efforts, repairing the 

current damage is a great concern. 
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 Many different types of chemicals enter ground and surface water sources, both 

inorganic and organic. Heavy metals, nitrates, and organometallics (especially tin 

compounds) are the most common inorganic sources of pollution, both technologically 

and agriculturally based.3   Some of the most common and harmful organic pollutants in 

wastewater and other polluted sources are organic molecules, including polychlorinated 

biphenyls (PCBs), chlorinated and brominated phenols, chlorinated hydrocarbons, 

atrazines, surfactants, and a plethora of aromatics contained in pesticide runoff, sewage, 

and industrial sources.3 Although this is by no means an exhaustive list, it does highlight 

the fact that many of these are small molecules that are at least mildly soluble in water 

sources and are toxic to all forms of life. Physical means of removing waste include 

filtration, distillation, ion exchange, and reverse osmosis. Most of these methods, though, 

are useful only for insoluble or inorganic compounds.1 Chemical methods for removal of 

organics include waste incineration, anaerobic digestion, and physicochemical methods. 

Chemical oxidation is a physicochemical method involving highly oxidizing materials 

used to convert organic pollutants to carbon dioxide, water, and other fully oxidized 

species like nitrates and sulfates. By oxidative means, harmful organic compounds can be 

broken down into substances that the other methods (ion exchange, distillation) can easily 

separate from water. 

These chemical oxidation processes can be divided into two major classes: 

conventional and advanced. Conventional processes4 involve wet chemical oxidizing 

agents, including ozone, persulfate, and Fenton reagents (Fe3+/H2O2). These methods 

have been proven effective in the remediation of a wide array of organics, but have 

several disadvantages. These include toxicity and potential safety hazards of the strong 
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oxidizing agents (like H2O2 or permanganate). Also their high reactivity can lead to a 

short lifetime and thus incomplete oxidation of organics, producing intermediates that 

may be more toxic than the original pollutant.4  

A heavily studied alternative to conventional oxidation is that of advanced 

oxidation using sonolysis, radiolysis, or photolysis. Advanced oxidation processes  

(AOPs) are those processes that involve the creation of in situ oxidants with high 

oxidation potentials.5 Of particular interest is photolysis, known as photodegradation, in 

terms of waste treatment. The most widely employed light-assisted remediation methods 

are direct photolysis, degradation with UV/H2O2, photolysis with ozone, and 

photocatalysis.6  

As many organic compounds are resistant to direct photolysis under visible or UV 

light, a sensitizer or photocatalyst must be employed. Solution phase UV reagents, like 

H2O2, have many of the same downfalls that non-AOP chemical oxidizers have, including 

the tendency to react completely before the intended pollutant is sufficiently destroyed. 

Photocatalysts, being generally water-insoluble, do not suffer from this limitation, as 

many are rugged under aqueous conditions and resistant to photochemical degradation. 

Both of these methods generate hydroxyl radicals and other strongly oxidizing species in 

solution.5 Therefore, photocatalysis and homogenous photodegradation share many of the 

same mechanistic traits, including an exceptional ability to degrade organic molecules to 

fully oxidized forms, as shown in Reaction 1.  
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TiO2
CxH2x + xO2

h!
xCO2 + H2O

x

2
 

Reaction 1. Destruction of a generic organic molecule using titanium dioxide and light 

 

Semiconductor photocatalysis relies on the use of metal oxides to create oxidized 

holes, which directly react with adsorbed molecules. This subject is explained in further 

detail in section 1.3. In particular, titanium dioxide (TiO2) has emerged as the most 

studied of these photocatalysts for its high degradation efficiency with almost any organic 

molecule and many other attractive properties, including physical and chemical stability 

and low price.7  

Although many of the degradation characteristics of TiO2 are known, many of the 

initial chemical processes of degradation that occur directly after excitation are still 

unclear. This thesis describes a study of the mechanistic organic chemistry occurring in 

the initial stages of the oxidative degradation of organic molecules at the surface of 

titanium dioxide photocatalysts. Specifically, the present studies focus on the effect of 

catalyst particle size on the degradation mechanism of organic molecules at various pH 

values. Also, organic molecules with well-defined oxidation chemistry are required in 

order to effectively study degradation mechanisms. Work is described in which two 

probe molecules are characterized for use in this research. 
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1.2. Thesis Organization 

 

 This thesis is divided into three chapters. Chapter 1 is a general introduction to the 

subject of water remediation and chemical oxidation. It explains the background 

information needed to understand the chemistry behind photocatalysis, with titanium 

dioxide as the subject of interest. The properties of titania in terms of its ability to 

degrade organic molecules are discussed. 

 Chapter 2 describes the effects of titania particle size on the degradation of ANP 

and 4-methoxyresorcinol (MRC). These two probe molecules yield degradation 

chemistry that has been well studied in order to ascertain mechanism based on product 

ratios. Nanometer scale titanium dioxide has shown the highest activity for the 

degradation of organic pollutants, but an optimum size has yet to be reached with an 

optimum charge carrier recombination to surface area ratio. To attain this, the 

Millennium PC catalyst series is studied and compared to a known catalyst, Degussa P25. 

The PC series are differentiated by size based on the extent of sintering performed. Each 

catalyst in the series is produced using the same procedure, with only the final sintering 

step varied by the amount of time spent annealing. This method produces catalysts that 

differ by particle size and surface area. 

 

1.3. Semiconductor Photocatalysis 

 

 Semiconductors used for the photosensitization of organic molecules are usually 

metal oxides or metal sulfides. The most commonly studied semiconductors include 
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TiO2, ZnO, WO3, Fe2O3, and ZnS.8 In searching for an ideal photocatalyst for 

remediation of organic molecules using sunlight, several factors must be taken into 

account; chief among them are oxidation potential and band gap energy. The oxidation 

potential is important, since the ability to form a photogenerated valence band hole (h+
vb) 

or create a hydroxyl radical (HO•
ads) in water is key to its use as a photocatalyst for the 

oxidation of organic molecules. This is also true of the reducing power of the excited 

conduction band electron (e-
cb), which must be of sufficient energy to reduce molecular 

oxygen to superoxide.6 These two chemical processes are the key to the photocatalysis of 

organic molecules to harmless gaseous products (H2O, CO2) and inorganic ions (NO3
–, 

SO4
2–).  

The band gap energy of the semiconductor defines the wavelength of light needed 

to excite the electron to the conduction band, which leaves a positively charged hole in 

the valence band, h+
vb.9 If the required wavelength is higher than the range of the solar 

spectrum (i.e. higher energy than that of solar output) for a given semiconductor to form 

charge carriers, then that semiconductor is of no use for the degradation of organics using 

sunlight without significant electronic modification. Titanium dioxide (TiO2) has both a 

high oxidation potential and a band gap that allows for absorption of the UV portion of 

sunlight. Unfortunately, the UV portion makes up only about five percent of the solar 

emission spectrum.7 

Despite the low solar absorbance, titania is considered the best choice for general 

photocatalytic needs as it fits other desirable criteria. TiO2 is cheap, nontoxic, 

photolytically and chemically stable, and reusable with a high turnover rate. It is also 

easy to modify the chemical and physical characteristics of TiO2, including absorption 
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range and particle size, which can be considered the most important means of 

modification of titania’s oxidation capabilities. Methods of electronic modification of 

TiO2 to extend the band gap to higher wavelengths will be discussed later.  

 

(1)

(2)

(3)

(4)

(5)

(6)

(8)

(7)

TiO2 + h! e-cb h+vb

H2Oads HO•ads H+

O2 O2
•-

HO2
•

H2O2

HO• HO-

A

D

A•-

D•+

h+vb

h+vb

e-cb

e-cb

e-cb

O2
•- H+

HO2
•

H2O2

+

+

+

+

+

+

+

O2

+

+

e-cb h+vb

+

TiO2 + heat (9)+

HO2
• +

+

 

 

The chemical mechanism of titanium dioxide photocatalysis in water is shown in 

Equations 1-9. Figure 1 serves to show a pictorial representation of these processes. 

Equation 1 shows the initial reaction of titanium dioxide with light, producing a hole and 

an electron that act as the active excited species, which then react with water and oxygen 

as shown in equations 2-5. In aqueous conditions, Ti-OH groups are abundant and are the 

major source of hydroxyl radicals on the TiO2 surface.10 The downstream products of 

reactions with molecular oxygen are superoxide (O2
•-, Eq. 3) and often hydroxyl radical 

(HO•, Eq. 5), which can react with a nearby organic molecule.  Equations 5 and 6 show 

the formation of hydrogen peroxide, which is known to split into two hydroxyl radicals in 

aqueous photolysis or to accept electrons as in equation 6.11 The hole, h+
vb, can also react 
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directly with an adsorbed organic donor (D) as in equation 7. In systems where TiO2 is 

used to reduce molecules, as in a dye-sensitized solar cell, A is the organic molecule and 

D (Eq. 7) is a hole trap.12 Equation 8 describes the reduction of an adsorbed molecule by 

the conduction band hole. In this case, A is considered an adsorbed molecule that can 

accept electrons. Reductive titanium dioxide chemistry is less studied due to the lower 

reducing power of e–
cb compared to the high oxidizing power of h+

vb.8 Finally, equation 9 

describes the recombination of the two charge carriers that releases heat. This process is 

known to occur for approximately ninety percent of all charge carriers formed, and is 

thus the major competing reaction with all “useful” chemistry in this system.  

 

h!
D

D•+

O2

O2
•"

A

A•"

TiO2

VB

CB

e"e"

e"

h+

 

Figure 1. Pictorial view of TiO2 excitation 

 

A great deal of work has been carried out to understand surface recombination 

and many modifications of titania are based on reducing recombination.13 The constant 

addition of an oxidizing agent to a reaction is required; otherwise, Equation 9 becomes 

the primary surface reaction since the charge carriers are not physically separated. A 
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common oxidant is molecular oxygen (O2, Equation 8), which is added to titania 

reactions since it acts as a stoichiometric oxidant (Reaction 1).3 Due to its high reduction 

potential and also the fact that the superoxide ion produced reacts further to produce more 

hydroxyl radicals (Equations 3-5), O2 makes an ideal trap for surface e–
cb. O2 is a better 

electron acceptor than most organic molecules studied in this chemistry; thus equation 3 

becomes an important process in aqueous photocatalysis. 

Titanium dioxide exists in three crystalline phases: anatase, rutile, and brookite. 

Of the three, brookite is the only photochemically inactive one, and is unimportant in the 

field of photocatalysis from a reactivity standpoint. The synthesis of titanium dioxide 

from well-known precursors can result in the formation of brookite, but careful control of 

pH and temperature will eliminate the brookite crystallization.14 On this note, the 

synthesis of titanium dioxide at low temperatures can also yield an amorphous catalyst 

that has been studied recently for photocatalytic activity, but was found to be well below 

the threshold of rutile and anatase in terms of reactivity.15 

Rutile was the first morphology to be studied in detail and thus much of the early 

experimental and theoretical work on TiO2 was based on it.16,17 Rutile is the more 

thermodynamically stable of the two photochemically active phases. Having a band gap 

energy of 3.0 eV (418 nm), rutile would seem more ideal than anatase (3.2 eV, 387 nm), 

but as studies have shown, it is actually weaker compared to anatase in the degradation of 

many organic molecules,7 which is most likely due to the more tightly packed crystal 

structure in rutile, which has fewer defect sites in the bulk to trap photoexcited holes and 

electrons and thus reduce charge carrier recombination. Most of the research on 

remediation chemistry in the past few years has been performed on the anatase phase. Its 
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high band gap energy leads to a higher reduction potential, which allows for the oxidation 

of less reactive organic materials, like substituted benzenes. This, however, has the 

disadvantage of shifting the absorption band of the anatase catalyst to the blue, which 

allows for less sunlight absorption.  

Modifications to the electronic structure of titanium dioxide in order to shift the 

absorption into the visible range are under intense study in the photocatalysis field. The 

most common types of alterations include pure titania modifications and doping with 

other elements or semiconductors. Pure titania variations involve changing the 

morphology and surface area (particle size). In terms of morphology, having both active 

crystal phases present makes a large difference in photocatalytic activity. Degussa P25 is 

a catalyst that contains 80% anatase and 20% rutile prepared by high temperature 

sintering.18 When compared to the overwhelming majority of single-phase catalysts, P25 

performs better in terms of degradation efficiency. This heightened photocatalytic 

activity has been attributed to the ability of excited electrons from the surface of anatase 

to become trapped in the lattice of the rutile phase, minimizing charge carrier 

recombination.19  

The optimal particle size (and thus surface area) of titania has been studied by 

many groups over the years and affects both the amount of pollutants that can adsorb to 

the surface and the amount of charge carrier recombination that can occur, since 

recombination is a surface process.20-22 Particle size considerations are discussed in 

further detail in chapter 3. In general, nanoscale titanium dioxide (1-100 nm) is 

considered to be the most active in the degradation of organic compounds, although many 
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micrometer scale catalysts are available and moderately effective. For reference, P25 has 

been measured to have a particle size of 25-35 nm.18  

Other morphological modifications include the coating of titanium dioxide onto 

the surfaces of polymers and silica of multiple sizes and shapes for use in realistic water 

and air treatment. In addition, mesoporous TiO2 and zeolites embedded with titania have 

been employed in efforts to dramatically increase surface area and allow for selective 

oxidations (i.e. chemical synthesis applications).23 

The doping of titanium dioxide is a quickly progressing field where all manner of 

metals, non-metals, and other metal oxides have been coated onto or co-produced with 

titania crystallites in the interest of improving visible light absorption and/or decreasing 

recombination. One of the first and most successful doping strategies is the deposition of 

noble metals (like Pt or Au) onto the titanium dioxide surface, with the goal of splitting 

water into H2 and O2, which cannot be performed on naked TiO2. When small (~2 nm) 

particles of Pt are deposited on the titania surface, an increase in the production of H2 

from adsorbed water molecules is observed.7,24 This is due to the movement of electrons 

from the TiO2 surface to the metal, which reduces the H2O to H2. In most cases, the 

deposition of noble metals is used for H2 production as opposed to water purification. It 

should also be noted that the photoactivity of the rutile phase is greatly increased (for H2 

production) by the deposition of noble metals, especially platinum.15 Unfortunately, 

noble metals are too expensive to utilize on a large scale. The use of transition metals, 

including Fe and Cr, as dopants has been performed, but in many cases these metals act 

as electron and hole traps, and adversely increase the recombination rate instead of 

lowering it.13 
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Titania has also been prepared as a homogenous mixture with other metal oxides, 

including SnO2 and WO3.25 Tungstate doping in particular has been shown to shift the 

band gap of TiO2 closer to the visible spectrum (2.86 eV vs. 3.21 eV for pure anatase).26 

This result is highly encouraging, as mentioned before, since increasing the sunlight 

absorption is one of the major goals of titania research. Increased degradative ability (i.e. 

rate of oxidation of organic molecules) is also reported for many of these catalysts 

compared to pure anatase and P25. This has been attributed to both increased surface 

acidity27 of the mixed catalyst surface, as well as charge carrier trapping,28 much like 

noble metal doping. 

The most recent form of titania doping employs main group elements, especially 

C, S, and N. These elements substitute for O or Ti atoms in the titania lattice and 

introduce mid-gap levels in the electronic band structure where lower energy (and thus 

longer wavelength) excitations could occur, thus extending the band gap into the visible 

region, much like the case of tungstate doping.13,26 

 

1.4. Degradation of Organic Molecules with TiO2 

 

 Reaction 1 shows the general degradation of organic compounds with titanium 

dioxide. Much of the oxidative chemistry of titania is attributed to the action of highly 

oxidizing species like surface-adsorbed hydroxyl radical, HO•
ads, which are formed in situ 

in aqueous photolyses of titania. The mechanism of organic pollutant degradation is 

highly dependent on reaction conditions and the structure of the organic molecule. For 

the most part, the titania surface acts as an adsorption center for organic molecules, which 
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bind to it specifically or on an ad-layer within a few angstroms of the surface. From here, 

the molecule is oxidized, either by direct single electron transfer or by addition of HO•
ads. 

After this, a cascade of radical reactions ensue involving oxidation to CO2 and H2O or to 

an intermediate species. In a few isolated cases, recalcitrant species are formed that 

cannot be degraded further by TiO2 (see below).3 

 To give a more specific example of the mechanism of degradation, the case of 4-

chlorophenol (4CP) will be discussed. 4CP has been used extensively in mechanistic 

research as a model for a halogenated aromatic molecule.29,30 This class of molecules is 

ubiquitous in terms of being found in polluted waters of many sources. In particular, 4CP 

has a set of photocatalytic products that can be confidently assigned to the action of 

certain oxidative processes. These include hydroxylation of the aromatic ring either 

directly or by ipso substitution of the chloro group, both of which are attributed to HO•
ads 

chemistry.29,30 

 The other major process in the degradation of 4CP is opening of the aromatic 

ring, which is attributed to chemistry initiated by direct electron transfer from the 

aromatic ring to the titania surface.31 This type of single electron transfer (SET) to the 

titania surface is thought to occur alongside hydroxyl radical chemistry, although due to 

the requirement of specific binding (for efficient electron transfer), it can be largely 

disfavored in the degradation of some molecules. In the case of phenols and especially 

catechols (1,2-benzenediols), SET chemistry manifests itself by the formation of ring-

opened products where molecular oxygen has attacked the adsorbed molecule and two 

carboxylic acid groups are formed through a proposed dioxetane intermediate.30 This 

matter will be discussed in detail in Chapter 3. 



www.manaraa.com

 14 

It has been stated multiple times that titania degrades almost any compound that it 

comes into contact with. However, there are exceptions, most notably cyanuric acid 

(Figure 2), which is the ultimate degradation product of a wide variety of triazines.32,33 

Although compounds like triazines are isolated cases, the phenomenon of incomplete 

degradation is very important as it can lead to insights into the chemical mechanisms 

governing the degradation of the molecules themselves, not to mention the prevalent 

processes on a given titania surface. Equations 1-9 only show the initial processes of 

aqueous phase degradations without going into any detail about the degradation of the 

chemicals themselves. By looking at the early products of degradation, and thus the early 

reaction steps, mechanistic insight can be gained, which can help lead to a greater 

understanding of how to improve the efficiency of the catalysts as a whole. The rest of 

this thesis describes work in pursuing these chemical concerns. 

 

N

N

N

OH

OHHO  

Figure 2. Cyanuric acid 

 

1.5. References 

 

 (1) Lorch, W. Handbook of Water Purification; Second ed.; Ellis Horword: 

Chichester, 1987. 



www.manaraa.com

 15 

 (2) Management, O. o. W. W.; United States Environmental Protection 

Agency: 1998. 

 (3) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 

1995, 95, 69-96. 

 (4) Huling, S. G.; Pivetz, B. E.; United States Environmental Protection 

Agency: 2006. 

 (5) Legrini, O.; Oliveros, E.; Braun, A. M. Chem. Rev. 1993, 93, 671-698. 

 (6) Halmann, M. M. Photodegradation of Water Pollutants; CRC Press: New 

York, 1996. 

 (7) Linsebigler, A. L.; Lu, G.; Yates Jr., J. T. Chem. Rev. 1995, 95, 735-758. 

 (8) Fox, M. A. Chem. Rev. 1993, 93, 341-357. 

 (9) Oppenländer, T. Photochemical Purification of Water and Air; Wiley-

VCH: London, 2003. 

 (10) Murakami, Y.; Kenji, E.; Nosaka, A. Y.; Nosaka, Y. J. Phys. Chem. B 

2006, 108, 8751-8755. 

 (11) Turro, N. J. Modern Molecular Photochemistry; University Science 

Books: Sausalito, California, 1991. 

 (12) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737-740. 

 (13) Thompson, T. L.; Yates, J. T. Chem. Rev. 2006, 106, 4428-4453. 

 (14) Isley, S. L.; Penn, R. L. J. Phys. Chem. B 2006, 110, 15134-15139. 

 (15) Zhang, Z.; Maggard, P. A. J. Photochem. Photobiol. A 2007, 186, 8-13. 

 (16) Bakaev, V. A.; Steele, W. A. Langmuir 1992, 8, 1372-1378. 



www.manaraa.com

 16 

 (17) Ghosh, A. K.; Wakim, F. G.; Addiss Jr, R. R. Phys. Rev. 1969, 184, 979-

988. 

 (18) Tahiri, H.; Serpone, N.; Le van Mao, R. J. Photochem. Photobiol. A 1996, 

93, 199-203. 

 (19) Hurum, D. C.; Gray, K. A. J. Phys. Chem. B 2005, 109, 977-980. 

 (20) Serpone, N.; Lawless, D.; Khairutdinov, R.; Pelizzetti, E. J. Phys. Chem. 

1995, 99, 16655-16661. 

 (21) Calza, P.; Pelizzetti, E.; Mogyorósi, K.; Kun, R.; Dékány, I. Appl. Catal. B 

2007, 72, 314-321. 

 (22) Zhang, Z.; Wang, C.-C.; Zakaria, R.; Ying, J. Y. J. Phys. Chem. B 1998, 

102, 10871-10878. 

 (23) Shiraishi, Y.; Saito, N.; Hirai, T. J. Am. Chem. Soc. 2005, 127, 12820-

12822. 

 (24) Emilio, C. A.; Litter, M. I.; Kunst, M.; Bouchard, M.; Colbeauu-Justin, C. 

Langmuir 2006, 22, 3606-3613. 

 (25) Wu, Q.; Li, D.; Chen, Z.; Fu, X. Photochem. Photobiol. Sci. 2006, 5, 653-

655. 

 (26) Song, H.; Jiang, H.; Liu, X.; Meng, G. J. Photochem. Photobiol. A 2006, 

181, 421-428. 

 (27) Engweiler, J.; Harf, J.; Balker, A. J. Catal. 1995, 159, 259-269. 

 (28) Do, Y. R.; Lee, W.; Dwight, K.; Wold, A. J. Solid State Chem. 1994, 108, 

198-201. 



www.manaraa.com

 17 

 (29) Li, X.; Cubbage, J. W.; Tetzlaff, T. A.; Jenks, W. S. J. Org. Chem. 1999, 

64, 8509-8524. 

 (30) Li, X.; Cubbage, J. W.; Jenks, W. S. J. Org. Chem. 1999, 64, 8525-8536. 

 (31) Bouquet-Somrani, C.; Finiels, A.; Graffin, P.; Olivé, J.-L. Appl. Catal. B 

1996, 8, 101-106. 

 (32) Oh, Y.-C.; Jenks, W. S. J. Photochem. Photobiol. A 2004, 162, 323-328. 

 (33) Watanabe, N.; Horikoshi, S.; Hidaka, H.; Serpone, N. J. Photochem. 

Photobiol. A 2005, 174, 229-238. 

 

 

 



www.manaraa.com

 18 

CHAPTER 2 

 

Particle size effects on the mechanism and kinetics of degradation of organic 

molecules using titanium dioxide photocatalysis 

 

2.1. Abstract 

 

Nanometer-size titania photocatalysts exhibit interesting variations in chemical 

properties due to quantum effects on the semiconductor band gap and, as the particles get 

slightly larger, due to surface and crystalline properties. Degradation of organic 

molecules appears to be most efficient at particle sizes between 10 and 100 nm for 

anatase phase catalysts. This study focuses on the early chemical steps of degradation and 

degradation kinetics of two probe molecules, 4-methoxyresorcinol (MRC) and 1-para-

anisyl-1-neopentanol (ANP) when the Millennium PC series anatase titania catalysts are 

used as the photocatalyst. These catalysts differ in particle size based on the amount of 

thermal annealing. Degussa P25, a mixed phase catalysts from another source, is used as 

a standard for high degradation efficiency. Product formation ratios are used to determine 

the extent of competing oxidative pathways between each catalyst. Multiple chemical 

probes are employed based on their relative abilities to adsorb to the photocatalyst 

surface, which changes the oxidation pathways open to them.  
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2.2. Introduction 

 

Titanium dioxide has been given considerable attention due to its exceptional 

ability to degrade organic molecules having a multitude of functionalities. In optimizing 

the conditions for degradation, it has been shown multiple times that the recombination of 

the two charge carriers, electrons (e-) and holes (h+), is the major cause of low 

degradation efficiency in titania.1 Many possible solutions to this challenge have been 

investigated, including main group and metal doping of the catalyst, mixing titania 

phases, and thermal annealing to induce crystallinity.1-3 

 The particle size, and thus surface area, of the catalyst directly relates to the 

degree of thermal annealing applied. In smaller particles (1-10 nm), the surface area is 

quite large; thus organic molecules have more active sites to adsorb to, but surface 

recombination is also greater, as the charge carriers have less distance to move to 

recombine. At these sizes, quantum effects lead to a hypsochromic shift in absorbance 

which allows less sunlight to be used by the catalyst.4 By thermally annealing these 

smaller particles, larger particle sizes (>50 nm) can be achieved. Sintering the 

nanoparticles introduces “deep” electron-trapping sites in the bulk structure5 and removes 

detrimental defect sites on the surface by increasing crystallinity.6 Both of these changes 

have the effect of reducing charge carrier recombination on the titania surface, which 

increases the lifetime of the photogenerated hole and allows for more useful chemistry. 

However, as particle size increases, the surface area available for excited holes to 

interact with the solution decreases. This implies that a balance must be struck and that an 

optimum particle size must be obtained. Many groups have studied this from a 
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spectroscopic sense, or for efficiency of removal of a particular model compound, and 

particle sizes from 4 to 75 nm have been implicated as ideal.6,7 The limit of most of these 

studies is that they fail to take into account the molecules being degraded and the 

pathways by which that happens. Two recent studies compare the degradation kinetics of 

phenol, anisole, pyridine, and other molecules known for selective types of reactivity.6,8 

Their results suggest that the most sintered nanoparticle (75 nm) yields the highest 

degradation rate for all of the studied molecule. Unfortunately no direct chemical product 

studies were included in these studies. 

Product formation data has the advantage of giving evidence for the primary 

operating mechanisms on a titania surface, which can’t be gained from degradation 

kinetics alone. In particular, the competition between the direct hole oxidation of an 

organic substrate and the chemistry associated with the adsorbed hydroxyl radical 

(HO•
ads) can lead to very different product distributions based on the substrate employed. 

The object of this study is to move towards a deeper understanding of the 

mechanism of degradation in order to shed light on the optimum nanoparticle size of 

titanium dioxide. Product studies and kinetics of 4-methoxyresorcinol (MRC, 1) and 1-

para-anisyl-1-neopentanol (ANP, 2) have been used by our group and others in order to 

study the favored mechanistic pathways of degradation using TiO2 photocatalysis.  

 

OH

OH

OCH3

HO

OCH3

4MRC, 1 pANP, 2  
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The catalysts in the Millennium PC series all derive from PC 500, which is a 5-10 

nanometer catalyst prepared by a sol-gel method. Beginning with the PC 500 catalyst and 

annealing it to different degrees leads to crystallites with a larger primary particle size. 

The number designation (i.e. PC 10) is based on the approximate surface area of the 

catalyst, as shown in Table 1. By using a well-characterized catalyst (P25) and probe 

molecules that yield reproducible degradation products as a control system, we can 

compare the PC series catalysts based on their particle size for both kinetic rates and 

product formation ratios. In this way we can gain insight into the effects of photocatalyst 

annealing on the mechanisms of early degradation steps previously elucidated for 

phenolic compounds.  

 

Table 1. Millennium Chemical PC series and Degussa P25 TiO2 

Catalyst Specific surface 
area (BET), m2/g 

Average particle 
size, nm 

PC 10 11 75 
PC 50 50 25 

PC 100 87 20 
PC 500 335 8 

P25 55 35 
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2.3. Experimental 

 

 All chemicals were obtained from Fisher or Aldrich in the highest purity available 

and used as received. 4-Methoxyrescorinol was synthesized by a reported method,9 as 

was 1-para-anisyl-1-neopentanol.10,11 Degradation intermediates for MRC (Table 3) were 

obtained commercially or prepared by literature methods.12 Similarly for ANP (Table 2), 

compounds 3-5 were obtained commercially. Compound 8 was prepared by a literature 

method11 and 6 was prepared by the sodium borohydride reduction of 8. The same 

synthetic scheme was used to obtain compounds 6 and 7. The water employed was 

purified with a Milli-Q UV plus system resulting in a resistivity ≥ 18 MΩ cm-1.  Titania 

samples employed were PC series from Millennium Chemical and P25 from DeGussa. 

Table 1 illustrates properties of the PC series as provided by the manufacturer. 

The standard suspensions for photocatalytic reactions were prepared at 100 mg 

TiO2 per 100 mL deionized water (DI water). Sonication for five minutes was used to 

break up larger aggregates of TiO2. Suspension pH was adjusted to 2.0 (0.01 M HCl), 8.5 

(0.1 M NaOH added during the reaction as needed), or 12.0 (0.01 M NaOH). Reactions 

were also performed at the natural unbuffered pH of the catalyst in water. After an hour 

of stirring and equilibration in the dark, the desired organic was introduced as a sonicated 

solution in water at concentrations of 0.3 to 1.0 mM, depending on the substrate.  The 

mixture was then purged with O2 and stirred for 20 minutes in the dark before the 

irradiation was started. Both stirring and O2 purging were continued throughout the 

reaction. 
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Photolyses were carried out with stirring at ambient temperature using a modified 

Rayonet mini-reactor equipped with a fan and 4-watt broadly-emitting 350 nm “black 

light” fluorescent tubes. The number of bulbs ranged from two to eight depending on the 

desired reaction completeness and reaction pH. Ferrioxalate actinomety13,14 was 

performed in order to allow semiquantitative comparison of data obtained from reactions 

with a differing number of bulbs. 

In the case of the pH 8.5 reactions, 0.1 M NaOH was added as needed to keep the 

pH at 8.5 ± 0.5. Reaction times were dependent on the degree of degradation required. 

Reactions with both probes and P25 taken to high extents of degradation at different pH 

values were used to gauge the approximate times for <20% degradation of starting 

material. These times were then used as the basis for all of the PC series reactions. 

After the reactions, samples were acidified with Amberlite IR-120 ion exchange 

resin. The TiO2 was separated by centrifugation, followed by filtration through a syringe-

mounted 0.2 µm PES filter to obtain 1.5 mL aliquots for kinetics or 50 mL samples for 

product studies.  Large samples were concentrated by rotary evaporation to ~ 2 mL and 

water was then removed by lyophilization.  

The dried MRC samples were exhaustively silylated by treatment with 1 mL of 

anhydrous pyridine, 0.2 mL of 1,1,1,3,3,3-hexamethyldisilazane (HMDS), and 0.1 mL of  

chlorotrimethylsilane (TMSCl).15 The resulting mixtures were shaken vigorously for 60 

seconds and then allowed to stand for 5 minutes at room temperature.  Some precipitate 

(pyridinium chloride) was separated by centrifugation prior to chromatographic analysis. 

In the case of ANP, dried samples were dissolved in 500 µL of 0.25 mM dodecane in 

methanol and directly injected. The partial degradation products were analyzed as their 
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trimethylsilyl (TMS) derivatives (for MRC) or as is (for ANP) using GC-MS on a Varian 

star 3400CX Gas Chromatograph using 25 m DB-5 column, coupled with a Finnigan ion 

trap detector mass spectrometer or an Agilent 6890 GC coupled to a Micromass GCT 

time-of-flight MS.  The temperature program of column was as follows: at 130 ˚C, hold 

time = 2 min; from 130 to 280 ˚C, rate = 20 ˚C/min.  A HP 5890 series II Gas 

Chromatograph with a 30 m DB-5 or 15 m DB-1 column and an flame ionization detector 

was also used for routine analysis. 

Kinetic data was obtained using HPLC data gathered from 1 mL aliquots that 

were acidified and centrifuged before injecting into a Varian ProStar or Agilent 1050 

liquid chromatograph with a diode array UV/VIS absorption detector. The eluent 

consisted of a 30:70 mixture of water and acetonitrile (HPLC grade) respectively for 

ANP, and a 80:20 mixture of 0.2% acetic acid in water and methanol for MRC. The flow 

rate was set to 1.0 mL/min. A C18 reverse-phase column (Supelco) was used for all 

probe molecules.  

Adsorption equilibria of MRC and ANP on P25 TiO2 were obtained over fixed 

periods with vigorous magnetic stirring. Solution pH was held at 2.0, 7.0, 8.5, and 12.0 

using 10 mM phosphate buffer. Natural pH was also used. Suspensions were prepared 

from 20 mL buffer containing 50 mg TiO2. After allowing the desired contact time, an 

aliquot was removed, centrifuged, and syringe filtered through Millipore filters to remove 

TiO2. The residual concentration of compounds was determined by HPLC, with the same 

conditions as the kinetic studies above. Kinetic study showed that the extent of adsorption 

reached a constant value after no more than 2 h for both compounds. For the quantitative 

adsorption experiments, at least 20 h equilibration was allowed before measurement. 
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2.4. Results and Discussion 

 

The two molecules employed to probe degradations are MRC and ANP. Each of 

the molecules has been tested in the literature in non-TiO2 experiments for oxidation by 

adsorbed hydroxyl radical (HO•
ads) and single electron transfer (SET) mechanisms.12,16 

The expected products of both major mechanistic pathways for substituted benzenes have 

thus been identified. These two molecules have been employed as each has weak 

interactions that allow for different types of binding with the titania surface. This in turn 

can lead to different amounts of degradation intermediates resulting from hydroxylation 

and single electron transfer for each probe molecule. 

 

2.4.1. MRC Degradation Products 

The intermediates formed upon oxidation of 4-methoxyresorcinol depend both on 

the catalyst employed and the pH at which the reaction is kept. Based on previous results 

where Degussa P25 was used, the pH at which the maximum number and concentration 

of degradation intermediates could be observed was found to be 8.5.12 For the present 

work, this pH has been used as both a standard and as a moderately high pH value. 

Degussa P25 is used as a standard catalyst for titanium dioxide photocatalysis and the 

major intermediates of MRC degradation using P25 are shown below in Scheme 1, based 

on past work.12 
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Scheme 1. Major initialproducts of MRC degradation based on photocatalysis with 

Degussa P2512 

 

A brief summary of the degradation mechanisms for MRC is warranted. The SET 

chemistry of MRC (Scheme 2) involves the formation of a radical cation due to oxidation 

by a photoexcited hole. This radical is attacked by surface-bound molecular oxygen or 

superoxide, which then forms a proposed dioxetane that then reopens, breaking the six-

membered ring to afford 10. The chemistry associated with HO•
ads causes hydroxylation 

of the benzene ring (Scheme 3), which leads to oxygen addition and hydrogen abstraction 

to form 12. Another possible mechanism is the abstraction of H• by HO• to make water, 

and subsequent addition of another hydroxyl radical to produce 12. The facile oxidation 

of this molecule in air leads to the benzoquinone product 13 (Table 3), much like in the 

degradation of 4-chlorophenol.17 

Once molecules from either path are ring-opened, further oxidations occur to 

produce C3 to C5 molecules that also appear in the product mixture, though usually in 

smaller amounts. These highly degraded products tell nothing of initial steps of MRC 

degradation, but presence of these small molecules in absence of 10, 12, or 16 implies the 

formation of the major products, even if early intermediates are quickly degraded. 
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Scheme 2. MRC ring-opening reaction 
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Scheme 3. MRC hydroxylation reaction 

 

2.4.2. ANP Degradation Products 

Product formation data was gained from multiple ANP reactions involving P25 

and PC series anatase catalysts at different pH. The data in Table 2 show the identified 

intermediates in the degradation of ANP with retention times and mass spectrometry data 

for a reaction using P25 at low pH, where the greatest amount of different products 

appear. High pH reactions and PC series reactions gave fewer products or products in 

different amounts as mentioned later. Intermediates were verified by comparison to 

authentic samples with the exception of the proposed product 9. 

The two possible identities of peak 9 are the ortho- or meta-hydroxylated 

products. Alkyl hydroxylation products were dismissed due to lack of prior evidence of 

such products in similar reactions.18,19 GC-MS data strongly suggests the hydroxyl group 

is attached to the benzene ring since the M+ peak is exactly 16 amu higher than ANP (2), 
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and the first two daughter peaks show loss of tert-butyl (M+–57), followed by loss of CO 

(M=28).  

Ranchella et al.20 pointed out that both the aldehyde 3 and ketone 8 products are 

obtained by an SET pathway based on TiO2 photocatalysis studies in acetonitrile that 

mirror results performed with K5CoIIIW12O40,21 a solution phase electron transfer reagent. 

Nuclear hydroxylated products, like 6 and 9, arise from HO•
ads chemistry based on studies 

with anisole and related benzene derivatives.17,22 Scheme 4 shows the most probable 

mechanistic pathway to yield 3.20 Although not shown in Scheme 4, the scissed t-butyl 

group is likely attacked by dissolved oxygen and converted to tert-butyl hydroperoxide, 

although it was not investigated. Compound 8, as mentioned below, is a very minor 

product, and its formation mechanism in water remains more speculative as it could arise 

from hydrogen abstraction or from 2+•. The hydroxylation of 2 to 9 is shown in Scheme 5. 

The formation of 6 involves either an ipso-attack by hydroxyl radical on the methoxy 

position of the phenyl ring or a demethylation reaction, based on related studies of 

anisole.22 The final step in Scheme 5 is most likely due to addition/abstraction by 

molecular oxygen to rearomatize the ring. 

 

HO
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O
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H
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H
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Scheme 4. Mechanism of oxidation of 2 to yield 3 
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Scheme 5. Mechanism of hydroxylation of ANP to form 9 

 

Table 2. GC-MS data for ANP products from P25 reactions at low pHa 

 

HO

OCH3

HO

OCH3

HO

O

OCH3

H

O

OH

Retention Timeb

(min)

MS Peaks:
m/z (Relaive Height)

Structure

3.85 77 (25), 92 (15), 107 (30), 135 (100), 136 (68)

5.74 65 (3), 77 (15), 109 (25), 121 (10), 137(100), 194 (4)

6.15 65 (8), 93 (9), 121 (100), 178 (4)

6.11 65 (5), 77 (14), 95 (16), 123 (100), 180 (3)

57 (8), 65 (15), 93 (36), 125 (20), 153 (100), 210 (8)6.86

O

OCH3

OH

4.96

O

OH

H

4.47 65 (23), 93 (38), 121 (100), 122 (91)

77 (5), 96 (5), 121 (10), 122 (9),135 (12), 151 100), 152 (9)

O

OCH3

6.30 77 (18), 91 (19)), 121 (13), 135 (100),192 (1)

Formula Weight

136

122

152

194

180

178

Abundance at low pHc

(low, meduim, high)

low

low

low

high

medium

low

192

210

!

medium
OH

3

4

5

2

6

7

8

9

OH

 
aHigh pH PC series reactions show fewer products and in different amounts, as mentioned in the text. PC 
series reactions give the same products in similar ratios 
aRetention time is based on TOF-MS data. 
bThe relative abundance is compared to the starting material, ANP. 
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The peak attributed to 4-methoxybenzoic acid (5) shows a SET product seen in 

sensitized oxidations of ANP using organic dyes, but has yet to be seen in titanium 

dioxide studies.23 This product is apparently a secondary oxidation product following 

formation of 3.24 In reactions taken up to 50% conversion of ANP, anisole was seen as a 

very minor product, presumably from a photo-Kolbe reaction of 3. Compounds 4 and 7 

are also secondary products that can be attributed to the further oxidation of 6, as they 

appear in only trace amounts in reactions taken to a higher degree of degradation. 

The absence of the ketone product 8 from the product mixtures is notable. Ketone 

8 is a major product in conventional electron transfer reactions,23 but is present in only 

minor amounts in acetonitrile-based titania chemistry.20 This may be due to direct 

oxidation of the aromatic ring (Scheme 4) as opposed to direct oxidation of the alcohol or 

hydrogen abstraction at the benzyl position. Direct oxidation of the ring is favored if 

close contact to the titania surface is available, which is true in the case aliphatic 

alcohols, which the benzylic alcohol of ANP can be considered.25 This aromatic ring 

attack leads to facile C-C bond cleavage versus C-H cleavage, which is prevalent with t-

butyl benzyl alcohols and leads to formation of the aldehyde product (Scheme 4).21 One 

way to make C-H cleavage more feasible in our system would be to tune ANP by 

replacing the t-butyl group with a methyl, ethyl, or isopropyl group. These groups are less 

likely to undergo scission and may be competitive with C-H cleavage to form a ketone 

product, as well as an aldehyde. 
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2.4.3. Trends Across the pH Spectrum for MRC Degradation 

 The effect of pH on titanium dioxide reactions varies depending on the probe 

molecule being employed, but the trends apply to all of the catalysts studied. At low pH, 

aliphatic and aromatic acids are known to bind strongly to the surface, which greatly 

enhances the degradation of these compounds, presumably by facilitating single electron 

transfer to the catalyst. The acids then undergo a photo-Kolbe decarboxylation on the 

surface. Successive reactions of this nature lead to complete mineralization.  

In the case of benzene derivatives, especially anisoles and phenols, higher pH 

values have been shown to yield the most efficient degradations.22 Table 3 shows 

semiquantitative results for degradation intermediates using PC 100 over the range of pH 

values employed. Similar results were obtained regardless of the catalyst employed (PC 

series or P25) as will be discussed below. 

At low pH, the rate of degradation and the number and concentration of 

intermediates formed are both low compared to those at high pH. In the case of pH 2, the 

only major products observed are those resulting from hydroxylation of the aromatic ring, 

as shown in Scheme 6. One major product that is formed at low pH is 14, 1,2,4-

trihydroxybenzene. This product is formed by demethylation or by an ipso-attack by 

HO•
ads at the carbon attached to the methoxy group, followed by elimination of methanol. 

Both mechanisms have been proposed before.22 Also formed is 12, which is considered 

the major hydroxylation product of MRC based on the P25 work.12 No major SET 

products are observed, but small amounts of C3-C5 products are observed. This indicates 

that ring-opening must be occurring, and that the major SET product 10 is being further 

degraded before it can desorb. 
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Table 3. MRC degradation intermediates from PC 100 reactions as identified by GC-
MS.a 

 

Structure

Abundanceb

(low, meduim, high)

low

low

low

medium

high

medium

3

13

4

5

11

12

6

pH  2 pH  5.5 pH 8.5 pH 12

OH

OH

OCH3

HO

O

O

OCH3

HO

OH

OH

OH

OH

OH

OH

HO

O

O

OH

HO

CO2H

CO2CH3

OH

CO2H

CO2H

HO

OH

medium

low

low

medium

medium

high

high

high

!

!

!

!

!!

!!

!!

!

!

medium

!

 
aSimilar ratios were obtained for P25 and the rest of the PC series catalysts 

bRelative to all experiments performed within this study, with the largest abundances being 1-10% that of 
remaining starting material (by GC integration) 

 

The natural pH of a titanium dioxide reaction is defined as the pH that the natural 

buffer qualities of TiO2 impose on the system through its own buffer capacity. The 

natural pH for the PC series was determined to fall between 4.0 and 5.0, with the pH 

decreasing by ≤1 pH unit within the reaction time. At natural pH, both 12 and 14 are 

formed in comparable quantity, which is comparable to the pH 2 data.  
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Scheme 6. MRC products at low pH 
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Scheme 7. MRC products at high pH 

 

In the case of pH 8.5, both types of products are present: ring-opening and 

hydroxylation (Scheme 8). The most prevalent products are 12 and 16, implying that 

hydroxyl radical attack is the dominant mechanism. Hydroxylation products 13 and 15 

are also present in medium abundance compared to pH 8.5. Unlike the low pH results, 10 

and 11 appear in lower quantity compared to the hydroxylated products. 

 The products at pH 12 offer a complete reversal compared to low pH values. The 

degradation of MRC is faster at this pH, and the product ratios are much different (Table 

3). The major hydroxylation product 12 is not seen at all, nor is the oxidized quinone 

form. Intermediates 11 and 16 are both present, especially the hydroquinone form 16, 



www.manaraa.com

 34 

which is very abundant and second only to 11. High quantities of 15 and 16 imply that 12 

or 14 are being oxidized quickly. Product 11 was not observed in the earlier P25 study of 

MRC (all of the other products were confirmed with authentic samples), but that may 

also be due to the reactions not being performed at a higher pH than 8.5. According to 

GC-MS (ion trap and TOF) of the silylated product mixture, the molecular ion and major 

daughter peaks are 375, 302, and 257 respectively, which leads to the assignment of the 

structure shown in Table 3. The difference of 73 between the molecular ion and first 

daughter are attributed to loss of TMS (M+•–73) and the 257 peak is that of a ring opened 

product with at least five carbons, much like 10. Although this product must come from 

both hydroxylation and ring-opening steps, it fits with structures of similar retention 

times (compared to MRC). 
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Scheme 8. Major products of ANP degradation based on photocatalysis with Degussa 

P25 and the PC series. 

 

At low pH, lack of SET products may be due to a lack of interaction between 

MRC and the TiO2 surface, since this type of chemistry is dependent on a close 



www.manaraa.com

 35 

interaction between substrate and photocatalyst.8,25 If MRC can only reach adsorbed 

hydroxyl radicals in the near-surface and solution phases, SET cannot occur, and the 

nearby hydroxyl radicals react first to yield products like 12 and 14. An alternative 

explanation is that the major SET products are acids, it is also possible that are formed, 

but bind strongly to the surface and are degrading quickly to products with fewer than six 

carbons. These C3 to C5 products are consistently detected in all MRC reactions, albeit in 

very small amounts compared to MRC.  

As pH increases past ~6, which is the point of zero charge (pzc) for TiO2, the 

surface gains an overall negative charge.2 This negative charge may be able to form 

hydrogen bonds with MRC, pulling the molecules close to the surface, where SET 

chemistry can occur, as noted by the appearance of 10 and 11 in the high pH reaction. 

Since hydroxyl radicals are formed at all pH values, and can be adsorbed to the surface or 

free in solution, it comes as no surprise that the hydroxylation products are prevalent in 

the pH range studied. 

 

2.4.4. Trends Across the pH Spectrum for ANP Degradation 

The degradation of ANP presents a simpler product mixture (Scheme 4 and Table 

3) than that of MRC. Table 3 applies to P25, but much like MRC, the trends for product 

ratios are the same among all five catalysts studied. At pH 2, ANP degradation affords 

the appearance of both SET (3 and 5) and HO•
ads products (5 and 9) in nearly equal 

amounts, though absolute quantification was not attempted. This implies that SET 

becomes very competitive with hydroxylation at low pH for this molecule. This contrasts 

with natural pH data that shows hydroxylation products with integrations greater than 
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10% of the starting material, with SET products making up less than 1%. It should be 

noted that the latter reaction was taken to slightly higher (~40%) conversion. For 

example, at higher conversion, if the hydroxylation products are slow to degrade 

compared to the SET products, then the GC-MS amounts may be misleading, much as in 

the case of the ring-opened products for MRC. 

At high pH, the SET products of ANP are undetectable in the product mixture, 

whereas the hydroxylation products appear in high abundance, much like in the higher 

conversion experiment at natural pH mentioned above. The observation of the 

mechanistic switch to SET with lower pH is special to this molecule due to it having both 

an anisole and an alcohol group. When these two functionalities are present, albeit as 

separate molecules in solution, alkanols are known to bind preferentially to the titania 

surface at low pH values over the aromatic methoxy groups.26 
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Figure 1.  Proposed binding model for ANP 

 

Figure 1 shows an illustration of a proposed binding model for our system, where 

the alcohol group would bind tightly to the surface, with weak interactions of the 

aromatic ring and possibly the methoxy group (due to hydrogen bonding interaction). 
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Adsorption of this nature could produce two results. SET chemistry (oxidation of the 

side-chain alcohol) would occur to a greater extent at low pH due to the close proximity 

of the aromatic ring to valence band holes on the surface. Thus the major products of the 

degradation of ANP at low pH values are aromatic hydroxylation and side-chain carbonyl 

formation (with small amounts of secondary products involving both SET and HO•
ads 

mechanisms). At high pH values, the alcoholic binding is still present,27 but electrostatic 

repulsion between the negatively charged surface and the methoxy group causes a 

binding mode change. The new binding motif leaves the aromatic portion situated in the 

near-surface layers, where only adsorbed and solution phase hydroxyl radicals can reach 

it. This is true in systems where fluoride displaces weakly bound substrates like phenol.25 

 

2.4.5. Comparison of MRC and ANP Degradations 

It is interesting to note that the major SET products for each probe molecule 

appear only at opposite pH values. In the case of ANP, we propose that both the alcohol 

and methoxy moieties bind to the surface at low pH, allowing for close contact between 

the aromatic ring and the surface, which is required for SET chemistry.2 At high pH, the 

negatively charged surface repels the methoxy group, so that only adsorbed and solution 

hydroxyl radicals can reach the aromatic ring, quenching direct electron transfer from the 

surface. pH. Anisole, which is structurally similar to ANP, also displays ring 

hydroxylation as the predominant reaction in TiO2 photocatalysis.22 Since MRC contains 

two hydroxyl groups, it is more susceptible to SET chemistry at higher pH since 

hydrogen bonding is still possible at pH 8.5 (the pKa’s of resorcinol are 9.32 and 9.81).28 
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This implies MRC is capable of weak binding to the titania surface, which allows SET to 

occur when no competitive binders (like aliphatic alcohols) are present.12  

The result that neither 10 nor 11 were observed at low pH bears mentioning. 

Carboxylic acids are known to bind strongly to acidic titania surfaces2, and studies show 

that aliphatic alcohols bind competitively.29 Bound chloride ions (from acidification with 

HCl) are also competing for surface binding sites,30 which leaves the anisolic and 

phenolic groups present on MRC to less specific binding sites or near-surface water 

layers, where HO•
ads is the major reactive species present.25 Another possibility that 

warrants investigation is that the low pH mixtures may contain ring-opened products 

bound to the titania surface. When the samples are worked up, the nanoparticles are 

removed by filtration, and the bound SET products would then remain with the catalyst in 

the discarded filter. 

 The differences in product formations as a function of the PC series catalysts 

present a striking result. For both probe molecules, the product ratios are the same for 

every catalyst in the series, and match the product ratios obtained with P25 as a control 

catalyst. It would appear that the amount of sintering has little effect on structure of the 

reactive centers on the titania surface, at least in terms of the interactions between the 

surface and adsorbed molecules. Since sintering is known to induce crystallinity and thus 

decrease defect sites, it can be speculated that the surface defects thought to be the 

reactive centers are either unaffected by annealing or are not themselves the most reactive 

sites on the titanium surface with respect to organic substrates. A look at the reaction 

kinetics is the logical next step, since the different surface areas of the catalysts would 

imply a difference in surface reactive site availability.  
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Figure 2. Representative plots of kinetic data a) ANP, pH 12 b) MRC, pH 8.5 

 

 2.4.6. Reaction Kinetics 

Shown in Figure 2 are representative kinetic plots for MRC and ANP. Table 4 

compares the rates of degradation of the two probes over the range of catalysts studied. 

Organic molecules remediated by titanium dioxide photocatalysis generally follow first-

order kinetics when taken to complete degradation. Our interest is not the end products 

(CO2, H2O, etc.), but the initial degradation steps: when the concentration of 

intermediates is still low and the initial concentration of probe compound is above 80%. 

In this region, the kinetics can be approximated to zeroth-order, in which the relative rate 

is simply a linear fit of concentration data (Figure 2). In the case of reactions where the 

extent of degradation leads to first order kinetics, only the linear portion is used for 

kinetic data in Table 4. It should be noted that the numbers presented in the table below 
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depend on the exact experimental conditions of sample geometry, light intensity, etc. 

They are appropriated for internal comparisons, but their absolute values are not 

especially meaningful. Unless otherwise noted, these kinetic data are calculated as a 

function of constant mass of TiO2, and not as a function of total surface area of TiO2 

used. 

 

Table 4. Rates of degradation of the two probe molecules 

ANPa Degradation rate (µM*min-1) 
catalyst pH 2 natural pH pH 8.5 pH 12 
PC 10 7 ± 1 13 ± 1 9 ± 1 10 ± 1 
PC 50 16 ± 1 12 ± 1 14 ± 1 16 ± 1 
PC 100 24 ± 1 6 ± 1 11 ± 1 9 ± 1 
PC 500 12 ± 1 4 ± 1 5 ± 1 7 ± 1 

P25 30 ± 2 30 ± 1 9 ± 1 19 ± 1 
MRCb     

catalyst pH 2c natural pHc pH 8.5 pH 12d 
PC 10 1.0 0.6 22 ± 2  
PC 50 1.0 1.0 36 ± 2  
PC 100 0.9 1.1 48 ± 4  
PC 500 0.3 0.04 12 ± 1  

P25 1.2 1.0 28 ± 2  
ainitial concentration of 2 mM 
binitial concentration of 0.3 mM, due to low water solubility 
cperformed with 8 bulbs and adjusted using ferrioxalate actinometry(all other are 
performed with 2 bulbs) 
ddue to rapid base hydrolysis of MRC, kinetic data was not obtained. 
 

2.4.6.1. Kinetic trends over the pH range 

 It is apparent from Table 4 that the rate of MRC degradation significantly 

increases with higher pH. This data shows an order of magnitude drop in rate from pH 

8.5 to low pH, which is especially apparent with PC500 where the rate drops from 12 to 

0.04 µM*min-1 as the pH goes below the isoelectronic point of TiO2. The small amount 
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of products observed in the low pH reactions fits well with a very low degradation rate, 

which hardly get above 1 µM*min-1. Had the low amount of products been due solely to 

rapid secondary degradation, the rate would not have been affected appreciably, but that 

is not the case for any of the catalysts. One explanation for this trend could be a 

consideration of the oxidation potential of MRC as the pH changes. Phenolic compounds 

with electron donating groups tend to have higher oxidation potentials at low pH and 

these values decrease with higher pH.31 Since Table 4 shows a 40 times greater rate of 

degradation at high pH, it could be that the low pH conditions lead to a coordination 

sphere around MRC consisting of H-bonded water molecules that disfavor oxidation by 

h+
vb or HO•

ads. At high pH when MRC is near its pKa, MRC is oxidized very efficiently, 

with complete loss of starting material in about two hours. Kinetic data is absent for pH 

12 due to a fast base hydrolysis of MRC, which results in a measurable loss of starting 

material even prior to irradiation.  

 The trend for ANP shows a moderate increase of rate with decrease of pH, though 

it is apparent that highly acidic conditions favor degradation, much like carboxylic 

acids.32 Since both SET products and hydroxylation appear at low pH, it can be 

concluded that the increased rate stems partly from increased direct electron transfer from 

the substrate to the surface, due to tight binding of ANP to the TiO2 surface at low pH. At 

high pH, only the hydroxylation mechanism is occurring efficiently, and thus the rate of 

degradation is decreased due to less specific surface interaction, which results in reaction 

exclusively with hydroxyl radical (either adsorbed or solution phase).12 
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2.4.6.2. Kinetic trends between titania catalysts 

Table 5 shows the same kinetic data as Table 4, only the initial rates have been 

calculated as a ratio to that of P25 at pH 8.5, which has been used as a standard reaction 

condition by our group in the past.17 PC 10 and 50 degrade ANP at nearly the same rate 

regardless of pH, whereas degradation by the two small catalysts increases by at least a 

factor of 2 as the pH drops to 2.  With the exception of pH 8.5, P25 degrades ANP faster 

than the PC series over the pH range. This trend does not appear to follow into the MRC 

degradations, where P25 degrades at a similar rate as the PC series, especially at the two 

low pH values where almost most of the catalysts degrade MRC at 0.04 µM*min-1 

compared to P25 at pH 8.5.  

 

 Table 5. Rates of probe molecule degradation for pH comparison.a 

ANP degradation rate (µM*min-1) 
pH P25 PC 10 PC 50 PC 100 PC 500 
2 3.6±0.3 0.8±0.1 1.9±0.4 2.8±0.2 1.4±0.0 
Natural 3.5±0.0 1.5±0.0 1.4±0.0 0.7±0.2 0.4±0.2 
8.5 1.0±0.1 1.1±0.2 1.6±0.1 1.3±0.1 0.6±0.1 
12 2.2±0.1 1.2±0.1 1.9±0.1 1.1±0.1 0.8±0.0 

MRC degradation rate (µM*min-1) 
pH P25 PC 10 PC 50 PC 100 PC 500 
2b 0.04 0.04 0.04 0.03 0.01 
Naturalb 0.04 0.02 0.04 0.04 0.00 
8.5 1.00±0.06 0.80±0.08 1.40±0.06 1.74±0.17 0.43±0.05 
aRates are adjusted to P25 pH 8.5 equaling 1.0 µM*min-1 

bperformed with 8 bulbs and adjusted using ferrioxalate actinometry(all other are performed with 2 bulbs) 
 

Since SET reactions require close association with the surface, a larger surface 

area would increase the amount of ANP bound to PC 100 and PC 500, which should 

increase the rate of degradation. SET chemistry makes the majority of pyridine reactivity 
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with TiO2, and the rate of pyridine removal increases with increased surface area.6,33 

More probe molecules with varied structures would be useful in determining differences 

between each of the PC series catalysts, for example an aromatic acid that would serve as 

a strong binding probe that is also susceptible to ring-opening reactions like those of 

MRC.  

 Recent results by the Pichat group6,8 utilizing the PC series show a result not 

found in our studies. PC 10 degraded pyridine, anisole, and phenol up to ten times faster 

than any of the other catalysts. Considering the similarity of their latter two probe 

molecules to MRC and ANP, their result seems out of the ordinary. Without looking at 

the products formed, it is difficult to speculate about the PC 10 result they obtained. Our 

study points to PC 50 and PC 100 being the most efficient in terms of degradation 

kinetics, which makes sense when considering that a balance should be struck between 

surface area and charge carrier recombination (15-30 nm, based on the particle sizes of 

PC 50 and 100).  

 

2.4.6.3. Dark adsorption studies 

In order to help explain the trends in reactivity for MRC and ANP degradations, 

dark adsorption studies were carried out. P25 was used as a standard catalyst for all 

adsorption studies considering its high activity toward MRC and ANP and the similarity 

of products distributions gathered from it compared to the PC series. The adsorption 

isotherms in Figure 3 show that the adsorption capacities of ANP and MRC versus 

equilibrium solution concentration. The maximum adsorption capacities in Table 5 have 

been estimated as the asymptotic limit of each plot in Figure 3. The adsorption binding 
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constant, Kads, is characterized by the approach of the adsorption to its asymptotic limit: a 

faster approach means a larger Kads value. Kads values were estimated using the isotherm 

data in Figure 3. Each isotherm plot was linearized using the reciprocals of each data 

point. The binding constants of MRC decrease from 170 to 30 mM-1 with increasing pH, 

with the same trend appearing in adsorption capacity. At high pH, ANP has a binding 

constant of 8 mM-1. This is an order of magnitude lower than MRC, but the adsorption 

capacity of ANP is higher than that of MRC at high pH. 

 

 

Figure 3. Dark adsorption isotherms for a) MRC and b) ANP. TiO2 catalyst is 2.5 g/L 

P25 for all cases. Trendlines are exponential rise curves. 

 

Looking at kinetics data (Table 4), it is interesting to note that for MRC, both 

chemistries (SET and HO•
ads) are lower by at least an order of magnitude compared to 

high pH, which implies that more adsorption lowers the reactivity of MRC. In the case of 
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catechols and benzoic acids, a high binding constant also leads to low degradation, both 

at low pH and when compared to compounds with less binding affinity (like 

chlorophenols). This was attributed to the majority of photocatalytic degradation 

occurring in the surface-solution monolayer or solution multilayers, and not directly on 

the surface.34 Thus MRC at high pH degrades fast, since it does not bind as strongly as at 

low pH. ANP shows a higher adsorption capacity of 10-2 mM compared to 10-3 mM for 

MRC but the rates of disappearance of ANP are pH independent (for example PC 50, 

which has rate constants between 12 and 16 µM*min-1 over the pH range).  

 

Table 6. Maximum adsorption capacities estimated from dark isotherm plots 

Probe 
molecule pH apparent maximum 

adsorption capacity (mM*g-1) Binding constant (mM-1) 

MRC 2 5 x 10-3 170 
 7.0 4 x 10-3 70 
 8.5 2 x 10-3 30 
ANP 5 2 x 10-2  N/Aa 
 12 1 x 10-2 8 
aLinearization yields a negative binding constant 

 

Dark adsorption studies between similar benzyl alcohols and phenolic compounds 

have shown that the general order of binding affinities is ArOH>ArCH2OH>ArOMe.26,27 

Without the tight binding of a phenolic OH, ANP should not show as striking a contrast 

in degradation rate between low pH and high pH, which explains the kinetic data. This 

also leads to ANP having a higher capacity, since less specific binding sites are required 

for adsorption. This should also carry over to the “rate of adsorption” (Kads) since sites 

with lower specificity would lead to facile desorption as well as adsorption, which is 

supported by the high pH values for ANP (8 mM-1) and MRC (30 mM-1). 
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2.5 Conclusion 

 

 Degradation of MRC and ANP using the Millennium PC series has brought some 

interesting conclusions to light. Under ideal conditions for probe degradation, the most 

efficient catalysts for starting material removal were PC 50 and PC 100, which would 

place the ideal particle size between 15 and 30 nm for these catalysts. More appealing is 

the fact that neither the largest or smallest catalyst provided the most degradation, which 

would mean that both surface area and charge carrier recombination must be in balance 

for effective destruction of organic molecules. Also of note is the lack of difference in the 

mechanisms of degradation between the four PC catalysts, and their similarity to P25 

chemistry. This implies that sintering does not affect the active surface species to a great 

extent since hydroxyl radical and valence-band hole chemistries occur in the same 

proportions regardless of the catalyst employed. Instead, sintering seems to affect the 

particle size and surface area such that an optimum efficiency is obtained where surface 

area and recombination are balanced, which has a direct effect on the rates of probe 

degradation. To our best knowledge, this is the first direct evidence of this mechanistic 

effect pertaining to pure titania catalysts. Ongoing research will employ more probe 

molecules in hopes of expanding this work further. 
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CHAPTER 3 

 

General conclusions 

 

3.1. Conclusions 

 

 The photocatalytic degradation of organic molecules using titanium dioxide was 

investigated in this work. More specifically, the mechanisms of oxidation occurring on or 

near the titanium dioxide surface were studied based on results gained by using well-

characterized probe molecules whose oxidation products could be attributed to different 

types of chemistry (SET or hydroxylation). By this method, different titania catalysts can 

be evaluated based not only on their degradation efficiency, but also on what types of 

degradation are occurring on the surface. 

 With our group’s previous work in this area, we looked at a series of titanium 

dioxide catalysts that differ based on their primary particle size.1-3 The Millennium PC 

series catalysts are all synthesized as 5 nm (PC 500) catalysts that are then sintered to 

different degrees to yield 20 nm (PC 100), 25 nm (PC 50), and 75 nm (PC 10) catalysts. 

Using para-anisylneopentanol (ANP) and 4-methoxyresorcinol (MRC) as probe 

molecules, we found that the particle size has an notable effect on the kinetics of 

degradation, where PC 50 and PC 100 showed up to a five-fold rate increase compared to 

the other two catalysts. This has been attributed to two factors. First, these catalysts have 

sufficiently high surface areas to allow the most favorable interaction with probe 

molecules. Second, PC 50 and PC 100 seem to have a low enough surface-to-bulk area 
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ratio to decrease charge carrier recombination on the surface, which is a primary factor in 

decreasing degradation efficiency of small particles. Looking at the degradation products, 

the results show no significant difference between the four PC series catalysts with 

respect to the product ratios at each pH value. This implies that changes induced by 

sintering on the particle surface of titanium dioxide have little effect on the charge carrier 

dynamics with respect to their interaction with these probe molecules. In other words, the 

major effects of sintering on the photcatalyst surface are surface area effects and not the 

concentration or type of surface reactive sites, otherwise the product formation ratios 

should differ with pH and particle size. It would be interesting to extend this study to 

strongly binding molecules that degrade mainly through SET chemistry (like a carboxylic 

acid) and thus require close surface interaction for any degradation to occur. 
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